Jor the Jeacher

Strategy \#: Plus Zero

The following section will provide practice and reinforcement with the property of zero, while working with sums to 9999. Students will practice that whenever they add zero to a number, the sum is always that number.

$0+980=980$
$2561+0=2561$
$1000+0=1000$
$37+0=37$
$0+2900=2900$

$$
\begin{aligned}
& 3461+0=3461 \\
& 24+0=24 \\
& 0+111=111 \\
& 4215+0=4215 \\
& 10+0=10
\end{aligned}
$$

$$
0+393=393
$$

$$
2156+0=2156
$$

$$
0+15=15
$$

$$
160+0=160
$$

$$
900+0=900
$$

What do you notice about the facts in the box above?

When you add 0 to a number, the sum is always that number. Try it!

- Write 12 "Plus 0" facts in the box below:

Shade the rectangles.
True - Green False - Red

[^0]Write five "Plus O" equations that are FALSE:

Jor the Jeacher

*trategy \#2: Plus One

The following section will provide practice and reinforcement of plus 1 concepts.

The level begins with a brief review of adding 1 to a number between 0 and 9999 . Students should already be comfortable with this concept from previous grades, but it is still important to provide review.

After the review, students will learn to use their knowledge of plus 1 concepts to add larger numbers in the 10 's, 100 's, and 1000's.

For example, students can relate the following four equations:

One
 m0 0 θ

NUMBER	1 MORE
3551	3552
213	
709	
1145	
42	
8965	
9	

NUMBER	1 MORE
198	
2409	
5557	
354	
86	
15	
336	

When you add 1, the sum is always ONE MORE than that number.

$$
\begin{aligned}
& 329+1= \\
& 1 \text { more than } 329 \\
& \text { 203+1= } \\
& 1 \text { more than } 203 \\
& 5262+1= \\
& 110+1= \\
& \uparrow \\
& 1 \text { more than } 110 \\
& 2112+1= \\
& \uparrow \\
& \text { more than } 2112
\end{aligned}
$$

Let's Use PLUS ONE

We can use Plus 1 for other equations. Take a look at the equations below:
$2+1=3 \longrightarrow 20+10=30 \longrightarrow 200+100=300 \longrightarrow 2000+1000=3000$
$5+1=6 \longrightarrow 50+10=60 \longrightarrow 500+100=600 \longrightarrow+1000=6000$
$8+1=9 \longrightarrow 80+10=90 \longrightarrow 800+100=900 \longrightarrow 8000+1000=9000$

What do you notice about the equations in the box above?

Fill in the blanks:

Ones, Tens, Hundreds, Thousands: שทnman will

Draw base ten blocks for each equation. Then write the sum.

Extending the Plus One Facts

2-D

When we see an equation like this: $700+100=$ \qquad , we can think to ourselves, "I know that $7+1=8$, so $700+100=800$."

When we see an equation like this: $7000+1000=$ \qquad , we can think to ourselves, "I know that $7+1=8$, so $7000+1000=8000$."

Write the sum for each equation. If the sum is less than 4999, shade the box yellow. If the sum is greater than 4999, shade the box orange:

$50+10=$	$8000+1000=$
$9+1=$	$100+100=$
$60+10=$	$500+100=$
$7000+1000=$	$800+100=$
$200+100=$	$30+10=$
$700+100=$	$6000+1000=$

Use the Plus 0 and Plus 1 strategies to complete each equation.

Write 4 equations that use the plus 1 strategy with 100 's, or 1000 's:
\qquad

Jor the Jeacher

strategy \#3: Plus Two

The following section will provide practice and reinforcement of plus 2 concepts.

The level begins with a brief review of adding 2 to a number between 0 and 9998. Students should already know this from previous grades, but it is still important to provide review.

After the review, students will learn to use their knowledge of plus 2 concepts to add larger numbers in the 10's, 100's, and 1000's.

For example, students can relate the following four equations:

Two

NUMBER	2 MORE
3482	3484
2446	
314	
25	
509	
4713	
1000	

NUMBER	2 MORE
365	
89	
7	
1703	
250	
567	
9003	

When you add 2, the sum is always TWO MORE than that number.
$3490+2=$
than 3490
$600+2=$
$\begin{aligned} & 2 \text { more than } \\ & 600\end{aligned}$
$225+2=$
$398+2=$
2 more than 398
$1314+2=$
$87+2=$

We can use Plus 2 for other equations. Take a look at the equations below:

$$
\begin{aligned}
& 5+2=7 \longrightarrow 50+20=70 \longrightarrow 500+200=700 \longrightarrow 5000+2000=7000 \\
& 3+2=5 \longrightarrow 30+20=50 \longrightarrow 300+200=500 \longrightarrow 3000+2000=5000 \\
& 6+2=8 \longrightarrow 60+20=80 \longrightarrow 600+200=800 \longrightarrow 6000+2000=8000
\end{aligned}
$$

What do you notice about the equations in the box above?

Fill in the blanks:

Ones, Tens, Hundreds, Thousands: $3-C$

Draw base ten blocks for each equation. Then write the sum.

Extending the Plus Two Facts

3-D

When we see an equation like this: $400+200=$ \qquad , we can think to ourselves, "I know that $4+2=6$, so $400+200=600$."

When we see an equation like this: $4000+2000=$ \qquad , we can think to ourselves, "I know that $4+2=6$, so $4000+2000=6000$."

Write the sum for each equation. If the sum is less than 4999, shade the box light blue. If the sum is greater than 4999, shade the box red:

$60+20=$	$1000+2000=$
$4000+2000=$	$500+200=$
$700+200=$	$200+200=$
$400+200=$	$50+20=$
$300+200=$	$100+200=$
$2000+2000=$	$900+200=$

3-E

Cut out each equation. Paste it onto the graph.

Sums between 0				
and 1999				

Sum

Jor the Jeacher

strategy \#사: Plus Three

The following section will provide practice and reinforcement of plus 3 concepts.

The level begins with a brief review of adding 3 to a number between 0 and 9997. Students should already know this from previous grades, but it is still important to provide review.

After the review, students will learn to use their knowledge of plus 3 concepts to add larger numbers in the 10 's, 100's, and 1000's.

For example, students can relate the following 4 equations:

Let's review the plus three strategy:
$105+\because=\underline{108}$

Say, Use the dots to count up.
Think to yourself, OR "Which number is 3 more than 105?"

Use the dots to count on.

$$
\begin{aligned}
& 176+\bullet^{\bullet}= \\
& 78+\square \bullet \\
& 3908+\bullet \bullet= \\
& 209+\bullet \bullet= \\
& 700+\bullet \bullet \\
& 450+\bullet^{\bullet}= \\
& 1176+\square \bullet^{\bullet}= \\
& 6900+\bullet \bullet \\
& 8429+\bullet \bullet= \\
& 772+\bullet \bullet= \\
& 99+\bullet \bullet^{\circ}= \\
& 9830+\bullet \bullet \\
& 376+\bullet \bullet= \\
& 772+\bullet \bullet= \\
& 27+\square \bullet^{\bullet}= \\
& 99+\bullet \bullet=
\end{aligned}
$$

Find the sums:
$3476+3=$ \qquad
$1001+3=$ \qquad
$2375+3=$ \qquad
$800+3=$ \qquad
$567+3=$ \qquad
$400+3=$ \qquad
$4000+3=$ \qquad
$1999+3=$ \qquad
$4500+3=$ \qquad
$34+3=$ \qquad
$2734+3=$ \qquad
$100+3=$ \qquad

Let's Use PLUS THREE

Just like Plus 1 and Plus 2, we can use Plus 3 for other equations. Take a look at the equations below:
$2+3=5 \longrightarrow 20+30=50 \longrightarrow 200+300=500 \longrightarrow 2000+3000=5000$
$6+3=9 \longrightarrow 60+30=90 \longrightarrow 600+300=900 \longrightarrow 6000+3000=9000$
$5+3=8 \longrightarrow 50+30=80 \longrightarrow 500+300=800 \longrightarrow 5000+3000=8000$

How is the Plus 3 strategy similar to the Plus 1 and Plus 2 strategies?

Fill in the blanks:

Extending the

Now that you know how to extend the Plus 1 and Plus 2 facts, extending the Plus 3 facts is easy! Let's practice!

Write the sum for each equation. Circle the equation that was the most difficult to figure out. Shade in the box for the equation that was the easiest.

Solve the problems. Show your work for each one.

The play structure costs $\$ 6000$. A swing set costs $\$ 3000$. How much does it cost for the play structure and swing set altogether?

There are 400 people at the concert. There are still 300 empty seats. How many seats are at the concert in all?

$$
\begin{aligned}
& \text { Putting It All } \\
& \text { TOGETHER }
\end{aligned}
$$

Use the strategies that you have learned so far to solve the equations.

Bonus activity - Feacher dnstructions

Include this activity at the end of Level 4 in your Addition Station.

This activity integrates the strategies that students have already learned: +0, +1, +2, and +3 .

Overview:

In this Bonus Activity, students choose a task card, add the numbers, and record the equations in their notebook or on the recording sheet.

Preparation:

- Print and laminate task cards.
- Make copies of recording sheets (you may wish to have students record the answers in their notebooks instead).
- To set these up, I typically cut out the title and directions and paste them on either side of a piece of cereal box cardboard. I store the center pieces in small re-sealable bags, and then keep everything in a large re-sealable bag. I've made a video showing how I make and store the center pieces that you can watch by clicking here:
https://www.youtube.com/watch?v=Z4EKxxCYnjo\&feature=youtu.be

scuba Diver Iddition Math Center

Scuba Diver Addition

Math Center

scuba Diver Iddition Math Center

Directions

Choose a scuba diver card. Read the equation and find the matching sum on a seashell card. Place the two cards together and record the equations on the recording sheet.

©Shelley Gray

Jor the Jeacher

strategy \#5: Doubles

In this section, students will practice the doubles facts. By this time, students should have received instruction and practice (in previous grades) for the doubles facts. However, it is important to note that some students will still not have developed automaticity.

For the basic doubles facts $(2+2,4+4,5+5$, etc $)$, memorization should be a goal. It is important to provide time to practice this in your classroom.

After this level's brief review of doubles to 12 , students will use their knowledge in order to extend the doubles equations to larger numbers in the 10 's,100's, and 1000's.

For example, students can relate the following four equations:

This gets more difficult with equations such as the following (students will not work with equations that have a sum greater than 10,000 , such as $6000+6000$):

DOUBLES

$$
\begin{aligned}
& \text { Let's practice the } \\
& \text { Doubles Facts }
\end{aligned}
$$

$$
\begin{aligned}
& \because \because 0+\square \\
& \square+\square= \\
& \because \because 0 \\
& \bullet^{\bullet}+\bullet^{\bullet}= \\
& \text { ::: }+: 0
\end{aligned}
$$

$$
\begin{aligned}
& \because \bullet+\square= \\
& \because \because 0+\because \because 0= \\
& {\left[\begin{array}{r}
:: 0 \\
:: 8 \\
\hline:: 8 \\
: 8: \\
\hline
\end{array}=\right.} \\
& \because: 8+\square= \\
& \because 0+\square=
\end{aligned}
$$

Solve the doubles equations. If the sum is less than 15 , shade the circle yellow. If the sum is greater than 15 , shade the circle red.

Doubles FUn

Complete the doubles wheel:

Fill in the missing addends:

$$
\ldots_{+}^{+}=24 \quad ـ^{+} \ldots=6
$$

$$
\ldots_{\ldots}+\ldots \quad{ }_{\square}+\ldots=20
$$

-

\qquad

$$
+
$$

\qquad

$$
=16
$$

\qquad $+$ $=14$
\qquad $+$ \qquad

$$
=2
$$

\qquad $+$ \qquad

$$
=12
$$

\qquad $+$ \qquad

$$
=22
$$

\qquad $+$ \qquad

$$
=4
$$

\qquad

$$
+
$$

\qquad

$$
=10
$$

\qquad $+$ \qquad $=18$

Solve the problems. Remember to show your work.

There are 12 eggs in one carton. How many eggs are in 2 cartons? How about 4 cartons?

Each truck has 4 wheels. How many wheels are on 2 trucks? How about 4 trucks?

Extending The Doubles

We have practiced "extending" in other levels, like Plus 1, Plus 2, and Plus 3. Now let's practice extending the doubles facts!

$$
\begin{aligned}
& 4+4=8 \longrightarrow 40+40=80 \longrightarrow 400+400=800 \longrightarrow 4000+4000=8000 \\
& 2+2=4 \longrightarrow 20+20=40 \longrightarrow 200+200=400 \longrightarrow 2000+2000=4000
\end{aligned}
$$

Solve the equations:
$3000+3000=$ \qquad

$$
9+9=
$$

$1000+1000=$ \qquad
$20+20=$ \qquad $2000+2000=$ \qquad $50+50=$ \qquad
$400+400=$ \qquad $300+300=$ \qquad $80+80=$ \qquad
$200+200=$ \qquad $100+100=$ \qquad $4000+4000=$

Some doubles are more difficult to extend. Let's take a look:

$$
\begin{gathered}
8+8=16 \longrightarrow 800+800=1600 \\
\uparrow
\end{gathered}
$$

Think: "8 groups of $100+8$ groups of 100 makes 16 groups of 100 ."

Solve the equations. Circle the ones that you find difficult.
$600+600=$ \qquad

$$
80+80=
$$

$9+9=$ \qquad
$90+90=$ \qquad

$$
700+700=
$$

\qquad $70+70=$ \qquad
$500+500=$ \qquad
$8+8=$ \qquad
$20+20=$ \qquad

DOUBLES PRACTICE

Complete each equation:

Solve the problem:
There are 4000 books in the library. The librarian, Mrs. Smith, would like to double her collection. How many books does Mrs. Smith want to have in the library altogether?

Putting It All Together: Bubble Gum Addition

Jor the Jeacher

Strategy \#6: Doubles Plus One

In this section, students will practice the doubles plus one facts. Students have probably already learned this concept in other grades. However, it is important to reteach and reinforce to ensure that all students have the chance to review and master it. In order to experience success with the doubles plus one facts, students must have mastered the doubles facts. If they have not, provide time for them to do so.

For the doubles plus one facts, students think of the double and then add one more. For example, for $4+5$, think: " $4+4=8$ and one more makes 9."

After this level's activities with doubles plus one facts to 12 , students will use their knowledge in order to extend the doubles plus one equations to larger numbers in the 10 's, 100's, and 1000's.

For example, students can relate the following four equations:

Students will not work with equations that have a sum greater than 10,000 , such as $6000+7000$.

DOUBLES PLUS ONE

The Double... Plus One More!

When you see addends that differ by 1 , you can use the doubles plus one strategy

Now it's your turn!

DOUBLES PLUS ONE

$6-B$
Let's Practice the Doubles Plus One Facts

The double of 2 plus

Write a story problem for the equation $8+9$.

Now solve the problem:

Which doubles +1 equations do you find the most difficult?

Just like you've learned to "extend" the other facts, now you can extend the doubles plus one facts to work with higher numbers. Try it!

Choose the best strategy for each equation.
$30+40=$
Which strategy works best:
doubles plus one or plus 3 ?
 $200+100=$ \qquad
Which strategy works best:
doubles plus one or plus 2?

Explain how you solved each equation:
$9000+3000=\ldots$
\square
\square
$80+80=\ldots$
\square
\square
$10+11=$

Explain how the doubles plus one strategy works.

List 4 equations that you could use the doubles plus one strategy for:

Cut out the sums and paste them beside each equation. Use any of the strategies that you have learned so far.

Jor the Teacher

strategy \#T: Doubles Plus Two

In this section, students will practice the doubles plus two strategy. Students have probably already learned this concept in other grades. However, it is important to reteach and reinforce to ensure that all students have the chance to review and master it. In order to experience success with the doubles plus one facts, students must have mastered the doubles facts. If they have not, provide time for them to do so.

For the doubles plus two facts, students think of the double and then add two more. For example, for 3+5, think: "3+3=6 and two more makes 8."

After this level's activities with doubles plus two facts to $12+14$, students will use their knowledge in order to extend the doubles plus two equations to larger numbers in the 10's, 100's, and 1000's.

For example, students can relate the following four equations:

Students will not work with equations that have a sum greater than 9999 , such as $5000+7000$.

The Double...Plus TWO More!

When you see addends that differ by 2, you can use the doubles plus two strategy

Now it's your turn!

DOUBLES PLUS TWO Facts

The double of 2 plus

Write a story problem for the equation $12+14$.

Now solve the problem:

Which doubles +2 equations do you find the most difficult?

Just like you've learned to "extend" the other facts, now you can extend the doubles plus TWO facts to work with higher numbers. Try it!
 EFFICIENT (it helps us get the answer quickly). Which strategy do you think is the most effective and efficient?

Explain how you would solve $4000+2000$ using the Plus 2 strategy:

Explain how you would solve $4000+2000$ using the Doubles Plus 2 strategy:

Which strategy is the most EFFECTIVE and EFFICIENT? \qquad

Explain how you would solve $3000+3000$ using the Doubles strategy:

Explain how you would solve $3000+3000$ using the Plus 3 strategy:

Which strategy is the most EFFECTIVE and EFFICIENT? \qquad

Solve these equations using the most EFFECTIVE and EFFICIENT strategy.

$600+800=$	$30+10=$	$700+700=$
$2000+4000=$	$700+200=$	$20+40=$
$100+300=$	$4000+2000=$	$500+700=$
$500+500=$	$300+500=$	$110+90=$

Use any of the strategies that you have learned to complete these activities.
Write a greater than (>), less than (<), or equal sign (=).

$5000+4000$	5898+2	40+50	$80+10$	600+600	$600+700$
$300+300$	200+400	$800+800$	$1000+1000$	$60+30$	$40+60$
$4000+3000$	$300+400$	295+3	2+297	1978+1	$100+100$
0+578	$\int 500+100$	1000+2000	$1900+1$	$5000+2000$	$3000+3000$
$1000+2000$	2900+3	$500+500$	999+1	100+300	$300+500$

Fill in the missing number for each equation. Use any of the strategies that you have learned so far

Jor the Jeacher

Strategy \#8: Making 10, 100, and 1000

Making Ten is all about knowing the number combinations that can be added together to make ten. Ideally, we want students to move away from "counting on" and simply KNOW the number combinations that add to ten. For example, when a student sees $7+3$, he could think, " $7 \ldots 8,9,10$ " and get the correct answer. But it is even better if he looks at $7+3$ and automatically KNOWS that the sum is 10 without even counting on. By Grade 4, students should already know their number combinations that add to 10, but some might not have memorized them yet. It is important that students are given the time that they need to practice, as these skills will be used forever.

Making 100 is an extension of Making 10. When students know that $7+3=10$, they will learn that $70+30=100$.

Making 1000 is a natural extension of Making 10 and Making 100. When students know that $7+3=10$, they will learn that $700+300=1000$.

This level will provide lots of practice with these equations so that students will build automaticity with the number combinations adding to 10,100 , and 1000.

MAKING 10, 100, and 1000

Making TEN

Fill in the missing addend for each "Making 10" equation.

This is a group of 10 . Draw ones blocks to show how you could split up this group of 10 in four different ways.

Now that you know the number combinations that add to 10 , you can use similar combinations to make 100 !

Try it!

Dan and Fran went camping. It took them 20 minutes to set up their tent, and 80 minutes to make supper. Altogether, how many minutes did it take them to set up their tent and make supper?

Now that you have practiced the number combinations that add to 10 and 100, you can use similar combinations to make 1000!

You can use an empty number line to help you make 100 or 1000 . Let's try it for $600+$ \qquad $=1000$.

Write, "600." Then jump until you get to 1000 . That's 4 jumps. $600+400=1000$

Use the number lines to make 100 or 1000 .
$800+$ \qquad $=1000$

40+ \qquad $=100$

$700+$ \qquad $=1000$

$20+$ \qquad $=100$

$200+$ \qquad $=1000$

Problem-Solving with 100 and 1000 -

There are 1000 lockers in the school. 200 of them are blue. 500 are red. The rest are brown. How many of the lockers are brown?

Show your work.

Grandma turned 100 years old today! For the first 20 years of her life, she lived in Australia. Then she lived in the USA for 10 years. For the rest of her life she lived in England. For how many years did she live in England?

Show your work.

It takes 1000 pennies to make $\$ 10.00$. Dexter has 100 pennies. His sister has 300 pennies. How many more pennies do they need to make $\$ 10.00$?

Show your work.

Putting It All Together

Solve the equations using any of the strategies that you have learned so far. If the sum is EVEN, shade the box green. If the sum is ODD, shade the box blue.

$900+900=$
-

$5090+3=$
\qquad

Let's put it
$3000+4000=$

Bonus activity - Feacher dnstructions

Include this activity at the end of Level 8 in your Addition Station.

This activity integrates the strategies that students have already learned: $+0,+1,+2$, and +3, Doubles, Doubles +1, Doubles +2, and Making 10/100/1000 .

Overview:

In this Bonus Activity, students choose a task card, add the numbers, and record the equations in their notebook or on the recording sheet.

Preparation:

- Print and laminate task cards.
- Make copies of recording sheets (you may wish to have students record the answers in their notebooks instead).
- To set these up, I typically cut out the title and directions and paste them on either side of a piece of cereal box cardboard. I store the center pieces in small re-sealable bags, and then keep everything in a large re-sealable bag. I've made a video showing how I make and store the center pieces that you can watch by clicking here:
https://www.youtube.com/watch?v=Z4EKxxCYnjo\&feature=youtu.be

Winter Fun Oddition Math Center

Winter Fun Oddition Math Center

Directions

Choose a snowboarding card. Read the equation and find the matching sum on a tubing card. Place the two cards together and record the equations on the recording sheet.

$2000+3000$

$12+12$

$900+900$

$70+70$

$4000+4000$

$3000+4000$
 20
$2000+4000$

700+900

60+40

$900+100$

500+500

Jor the Jeacher

Strategy \#q: Adding 10's and 100's

In this level, students will learn how to add 10 and 100 (and multiples of 10 and 100) to a number, with sums to 9999 . Students will use place value understanding when learning this concept.

For example, in the equation $1245+20$, students will learn that they simply add 2 more groups of 10 to the tens place. For an equation like $4330+300$, they will add 3 more groups of 100 to the hundreds place.

ADDING 10's AND 100's

Adding 10's and 100's

Use the number charts to add the 10's or 100's to each number.

ADDING 10's AND 100's

Let's Add IO's and 100 's

Solve the equations. Remember that order of addends doesn't matter.
\qquad
$10+356=$ \qquad
$1916+30=$ \qquad
$59+20=$ \qquad
$8415+100=$ \qquad
$100+1440=$ \qquad
$490+300=$ \qquad
$20+3158=$ \qquad
$849+40=$ \qquad
$1110+400=$ \qquad
$100+238=$ \qquad
$300+2590=$ \qquad
$302+30=$ \qquad
$200+345=$ \qquad
$45+300=$ \qquad $560+30=$ \qquad
$100+2807=$ \qquad
$4982+10=$ \qquad
$3829+100=$ \qquad
$1824+50=$ \qquad
$9000+80=$ \qquad
$500+6161=$ \qquad
$80+8006=$ \qquad
$756+20=$ \qquad

Complete the +10 and +100 Wheels:

Write and solve three +300 equations:
\qquad
\qquad
\qquad
\qquad
\qquad

ADDING 10's AND 100's

Adding 10's and 100's

 WITH BEGBOUPDING

 WITH BEGBOUPDING}This shows 1 thousand, 5 hundreds, 8 tens and 1 one.

When we add 30, we end up with 11 groups of 10 in the tens column.

Thousands	Hundred s	Tens	Ones
1	6	1	1

10 groups of 10 makes 100 , so we take 10 tens and add 1 to the hundreds place. We still have 1 group of 10 leftover for the tens place.

Use the number charts to add the 10's or 100's to each number. Remember to regroup!

ADDING 10's AND 100's

PRACTICING WITH 10'S AND 100'S

Let's practice adding groups of 10 and 100 . Remember to regroup where you need to.
$1893+200=$ \qquad $2782+200=$ \qquad $5624+100=$ \qquad
$4820+60=$ \qquad
$657+400=$ \qquad
\qquad $3498+20=$ \qquad
$2000+400=$ \qquad
$8749+40=$ \qquad
$800+$ \qquad $=3932$
\qquad $+60=4590$
$2423+60=$ \qquad
700+ \qquad $=1981$
$+3459=3559$
$6902+80=$ \qquad
70+ \qquad $=1270$
\qquad $+40=3469$
\qquad $+300=3837$
$5482+40=$ \qquad $1002+700=$ \qquad
4503+ \qquad $=5003$
\qquad $+60=1710$ $3892+400=$

Maggie was born in 1980. What year will it be when she is 50 years old?

So far the family has travelled for 2000 kilometers. They still have 2346 kilometers to go. In all, how many kilometers will they be travelling?

Cut out each equation. Paste it onto the graph.

Sums between 0 and 1999	Sums between 2000 and 3999	Sums between 4000 and 5999	Sums between 6000 and 7999	Sums between 8000 and 9999

Jor the Jeacher

Strategy \#|0: Plus Seven, Eight, and Nine

Now that students have learned how to add ten and multiples of ten to a number, they will practice the Plus Eight and Nine strategy from previous grade levels.

In this Addition Station this concept is also extended to include plus 7's.

Students will be working with 2, 3, and 4 digit numbers ending in 7,8 , or 9 . They will be adding a 1-digit number.

To practice this concept, students learn to manipulate numbers in order to form a more manageable equation. For example, in the equation $218+6$, students could take 2 away from the 6 and give it to the 218 to make an even 220 . Now students can solve the equation $220+4$, which is much easier.

Once students learn the art of number manipulation to make an equation easier, you may notice that some of your students begin to manipulate the numbers in other ways as well, in order to make an equation easier to solve. This is wonderfull Flexible thinking is a big goal of mental math.

USING TENS To Add 7, 8, and 9

Friendly numbers are numbers that are easy to work with. Numbers like 10, 20, 50, 100 , and 200 are friendly numbers.

$147+9=$
Step 1: Take 3 away from the 9 and give it to the 147 to make a
friendly number.
Step 2: Now we have an easier equation to solve: \qquad $+$ \qquad $=$

On a scale of 1-3, how well do you understand this strategy? (1 means you don't understand it, 2 means you "kind of" understand it but still need more practice, 3 means you understand it really well.)
$2378+11=$ \qquad
Step 1: Take 2 away from the 11 and give it to the 2378 to make a friendly number.

Step 2: Now we have an easier equation to solve: \qquad $+$ \qquad $=$
$1818+12=$ \qquad
Step 1: Take 2 away from the 12 and give it to the 1818 to make a friendly number.

Step 2: Now we have an easier equation to solve: \qquad ${ }^{+}$ \qquad $=$ \qquad
$777+9=$ \qquad
Step 1: Take 3 away from the 9 and give it to the 777 to make a friendly number.

Step 2: Now we have an easier equation to solve: \qquad $+$ \qquad $=$ \qquad
$129+7=$ \qquad
Step 1: Take 1 away from the 7 and give it to the 129 to make a friendly number.

Step 2: Now we have an easier equation to solve: \qquad $+$ \qquad $=$ \qquad

$3207+11=$
 \qquad

Step 1: Take 3 away from the 11 and give it to the 3207 to make a friendly number.

Step 2: Now we have an easier equation to solve: \qquad $+$ \qquad $=$

Add It Up!

Fill in the missing numbers on the + -charts. Use the strategy that you learned for $+7,+, 8$ and +9 .

+7	
249	256
1178	
456	
22	
189	
277	
300	
11	
798	
6009	
2890	
367	
1788	

+8	
247	255
60	
2779	
59	
1190	
268	
1257	
6789	
256	
1188	
3909	
58	
20	

+9	
288	297
18	
199	
2679	
2278	
17	
2777	
3009	
458	
2167	
38	
9	

This month, Matthew worked for 119 hours. On the weekend he worked for 12 more hours. Altogether, how many hours did he work for?

Jor the Jeacher

Strategy \#\#: Adding 1000's

By this time, students have had practice adding 10 and 100 (and multiples) to numbers with sums to 9999. In this level, students will learn how to add 1000 and multiples of 1000 with sums to 9999 . Once again, students will use place value understanding when learning this concept.

ADDING 1000's

Adding 1000's

Solve the Plus 1000 equations. Remember that the order of the addends doesn't matter.
$4561+2000=$ \qquad $1000+2300=$
$1578+3000=$ \qquad
$2587+4000=$ \qquad
$1919+1000=$ \qquad
$6000+2376=$ \qquad
$2000+300=$ \qquad
$5000+1982=$ \qquad
$2598+2000=$ \qquad
$1000+1888=$ \qquad
$2745+3000=$ \qquad
$4812+4000=$ \qquad
$7600+1000=$ \qquad
$6000+2699=$ \qquad
$2000+100=$ \qquad
$5000+360=$ \qquad
$2590+2000=$ \qquad $1000+2576=$ \qquad $3000+3000=$ \qquad $1257+4000=$ \qquad $7529+1000=$ \qquad $6000+125=$ \qquad $2000+2444=$ \qquad
$5000+4010=$ \qquad

Add 1000 to each number on the

1000 kids are expected to attend the magic show. There will also be 890 adults. How many people will attend the magic show in all?

ADDING 1000's

Use any of the strategies that you have learned so far to solve the equations below.

Find the sums for the equations below. Then shade in the sum on the number chart.
$600+800=$
$70+30=$ \qquad
2399+6= \qquad
$3000+1290=$ \qquad
$800+200=$ \qquad $650+40=$ \qquad

Write equations for one of the sums that is
not shaded yet: \qquad $+$ \qquad $=$

Jor the Jeacher

Strategy \#|2: Using Friendly Numbers

In this level, students will learn a "bridging" technique that will be useful to them for the rest of their lives. It involves using a multiple of 10 or 100 in order to make an equation easier to solve.

For example, when a student is presented with an equation such as $216+9$, he can process the equation in this way:

Start with 216.

First add 4 to get to
the friendly number 220.
\uparrow
Now add the remaining 5. The
equation $220+5$ is easier to solve.

This strategy will reinforce flexible thinking, and further encourage students to manipulate equations in order to make them easier to solve.

In the Grade 4 Addition Station, students will practice this strategy with $3 / 4$ digit + $1 / 2$ digit equations.

Let's Make
 FRIENDLY NUMBERS

A friendly number is a number that is easy to work with. Numbers that end in 0 , such as 10,20 , $30,100,120,190$, and 200 and are friendly numbers. Let's try making some friendly numbers:

208 I can make this into the friendly number 210 by adding \qquad 2	455 I can make this into the friendly number 460 by adding \qquad .	35 I can make this into the friendly number 40 by adding \qquad
1579 I can make this into the friendly number 1580 by adding \qquad .	506 I can make this into the friendly number 510 by adding \qquad	2245 I can make this into the friendly number 2250 by adding \qquad .
513 I can make this into the friendly number 520 by adding \qquad -	1177 I can make this into the friendly number 1180 by adding \qquad	998 I can make this into the friendly number 1000 by adding \qquad .
7645 I can make this into the friendly number 7650 by adding \qquad	1299 I can make this into the friendly number 1300 by adding \qquad .	64 I can make this into the friendly number 70 by adding \qquad .
146 I can make this into the friendly number 150 by adding \qquad _.	104 I can make this into the friendly number 110 by adding \qquad	347 I can make this into the friendly number 350 by adding \qquad .

Using Friendly Numbers
 to Add Multi-Digit Numbers

We can use friendly numbers to make it easier to add two numbers. Take a look!
$216+9$

Start with 216.
the friendly number
220.

Now add the remaining 5. The equation $220+5$ is easier to solve.

Now you try!
$115+7$

$2217+9$
First add \qquad to get to
the friendly number 2220.
Now add the remaining 6. The equation $2220+6$ is much easier to solve!

Practicing With
 FRIENDLY NUMBERS

Use the empty number lines to solve each equation. Remember to jump to a friendly number first, and then complete the equation.
$407+7$

$1246+6$

$967+5$

$1925+9$

$618+8$

618

Let's Make

Solve the equations below. If you need to draw yourself a number line, make a small one in the box. If you can use the "friendly number" strategy in your head without the number line, go ahead!
$1217+4=$

$1582+9=$
$118+6=$

$736+8=$
$545+9=$

$1259+6=$
$5896+5=$
$4008+7=$
$577+7=$

Putting It All Together

Use any of the strategies that you have learned so far.

+1000			+100			+9	
2315	3315		3249	3349		48	57
8760			146			118	
8000			2572			369	
1179			144			78	
2541			7769			377	
6090			9876			219	

Write 5 equations that equal 1000:
\qquad $+$ \qquad $=1000$
\qquad $+$ \qquad $=1000$ $+$ \qquad $=1000$
\qquad $+$ \qquad $=1000$

Fill in the missing numbers.

[Write the sum.
$4000+4000=$ \qquad
$600+400=$ \qquad
$2625+300=$ \qquad
$500+500=$ \qquad
$6798+5=$ \qquad
$7000+1000=$ \qquad
$60+40=$ \qquad
$5698+3000=$ \qquad
$1257+8=$ \qquad
$0+8509=$ \qquad
$4908+80=$ \qquad
$4448+50=$ \qquad
\qquad $500+100=$ \qquad $1780+200=$ \qquad $700+700=$ \qquad $800+200=$ \qquad

Bonus activity - Feacher dnstructions

Include this activity at the end of Level 12 in your Addition Station.

This activity integrates the strategies that students have already learned: +0, +1, +2, and +3, Doubles, Doubles +1, Doubles +2, Making 10/100/1000, Adding 10's and 100's, Plus 7, 8, and 9, Plus 1000, and Using Friendly Numbers.

Overview:

In this Bonus Activity, students choose a task card, add the numbers, and record the equations in their notebook or on the recording sheet.

Preparation:

- Print and laminate task cards.
- Make copies of recording sheets (you may wish to have students record the answers in their notebooks instead).
- To set these up, I typically cut out the title and directions and paste them on either side of a piece of cereal box cardboard. I store the center pieces in small re-sealable bags, and then keep everything in a large re-sealable bag. I've made a video showing how I make and store the center pieces that you can watch by clicking here:
https://www.youtube.com/watch?v=Z4EKxxCYnjo\&feature=youtu.be

Ball Jeam Oddition Math Center

Ball Team Addition

Math Center

Ball Jeam Oddition Math Center

Directions

Choose a "team" card. Read the equation and find the matching sum on a baseball card. Place the two cards together and record the equations on the recording sheet.

$6707+3$

$$
11+11
$$

$600+700$

$2000+3000$

$900+100$

2942

$$
2105
$$

265

175

8090

261

145

$$
1256
$$

Adend

Jor the Jeacher

*trategy \#3: Left-to-Right Addition

In this level, students will learn how to perform left-to-right addition using a mental math approach. In a 3-digit plus 3-digit equation, this means that they will add the hundreds first, then the tens, and then lastly the ones. Place value understanding is crucial for this type of addition, but by this time students should have a good understanding of the thousands, hundreds, tens and ones places.

Ideally, by Grade 4 your students have already been exposed to left-to-right addition; however, it is still important to provide review with smaller numbers before learning with larger numbers.

In this level, students will begin with a brief review of 2-digit + 2-digit and 3-digit + 3-digit equations without regrouping. Then they will move along to addition with regrouping. Lastly, students will practice 4-digit + 4-digit addition with and without regrouping.

Decomposing Numbers

Decompose each number into thousands, hundreds, tens, and ones.

Compose:

$4000+100+4=$
$9000+100+40+4=$ \qquad $800+80+6=$ \qquad
$6000+400+20+5=$

$$
8000+100+60+4=
$$

\square

$$
7000+200+60=
$$

\qquad

$$
3000+400+20+5=
$$

$5000+10+4=$

LEFT-TO-RIGHT

When we add two 2-digit numbers, we can make it easier by adding the tens first, and then the ones. Take a look! $62+25$

First add the tens: \qquad $+$ \qquad
Then add the ones: \qquad $+$
\qquad $=87$
Then add the tens and ones together: $+$

$35+24$

First add the tens: \qquad $+$ \qquad $=$ \qquad
Then add the ones: \qquad $+$ \qquad $=$ \qquad
Then add the tens and ones together: \qquad + \qquad $=$ \qquad

Jack has \$64.00 and Glen has $\$ 33.00$. How many dollars do they have altogether?

Show your work:

$75+23$

First add the tens: \qquad $+$ \qquad $=$ \qquad
Then add the ones: \qquad ${ }^{+}$ \qquad $=$ \qquad
Then add the tens and ones together: \qquad $+$ \qquad $=$ \qquad

To add 3-digit numbers, we use the same process, except we add the hundreds first. Take a look!

$$
253+416
$$

First add the hundreds: \qquad 4 \qquad 00 600 Then add the tens: \qquad $+1$ \qquad = \qquad Then add the ones: \qquad $+$ \qquad $=$ \qquad
Then add the hundreds, tens and ones together: $600+60$ $+$ \qquad $=669$
$127+542$
First add the hundreds: \qquad $+$ \qquad $=$
Then add the tens: ___ + \qquad $=$ \qquad
Then add the ones: \qquad $+$ \qquad $=$ \qquad
Lastly, add the hundreds, tens and ones together: \qquad $+$ $865+134$
First add the hundreds: \qquad $+$ \qquad $=$ \qquad
Then add the tens: ___ \qquad $=$ \qquad
Then add the ones: \qquad $+$ \qquad $=$ Lastly, add the hundreds, tens and ones together: \qquad $+$ \qquad $+$ \qquad $=$

LEFT-TO-RIGHT ADDITION
 WITH and WITHOUT REGROUPING

Regrouping makes this a bit trickier, but you still follow the same process.

$$
45+37
$$

First add the tens: \qquad $+$ \qquad $=$ \qquad
Then add the ones: \qquad $+$ \qquad $=$ \qquad
Lastly, add the tens and ones together
\qquad $+$ \qquad $=$ \qquad
$54+26$

First add the tens \qquad $+$ \qquad $=$ \qquad
Then add the ones \qquad $+$ \qquad $=$ \qquad
Lastly, add the tens and ones together
\qquad $+$ \qquad $=$ \qquad

355+125

First add the hundreds \qquad $+$ \qquad $=$

Then add the tens: \qquad $+$ \qquad $=$ \qquad
Then add the ones: \qquad $+$ \qquad $=$

Lastly, add the hundreds, tens and ones together:
\qquad + \qquad $+$ \qquad $=$ \qquad

EXAMPLE
$613+641$

First add the hundreds: \qquad $+$ \qquad $=$ 1200 Then add the tens: \qquad $+$ \qquad $=50$ Then add the ones: \qquad $+$ \qquad $=$ \qquad
Lastly, add the hundreds, tens and ones together:
\qquad
\qquad $+$ \qquad $=1254$
\qquad
$13-C$

\square

$$
437+14
$$

First add the hundreds: \qquad $+$ \qquad $=$

Then add the tens: \qquad $+$ \qquad $=$ \qquad
Then add the ones: \qquad $+$ \qquad $=$

Lastly, add the hundreds, tens and ones together:
\qquad $+$ \qquad $+$ \qquad
\qquad

\square
\square

$$
78+41
$$

First add the tens: \qquad $+$ \qquad $=$ \qquad
Then add the ones: \qquad $+$ \qquad $=$ \qquad
Lastly, add the tens and ones together:
\qquad $+$ \qquad $=$

\square

$$
68+24
$$

First add the tens $+$ $=$

Then add the ones: $+$ $=$

Lastly, add the tens and ones together $-$ $=$

Solve the problem:
It is 136 kilometers to the gas station. The store is 114 kilometers past the gas station. How many kilometers away is the store?

$236+315$

First add the hundreds: \qquad $+$ \qquad $=$ \qquad
Then add the tens: \qquad $+$ \qquad $=$ \qquad
Then add the ones \qquad $+$ \qquad $=$ \qquad
Lastly, add the hundreds, tens and ones together
\qquad $+$ \qquad $+$ \qquad $=$ \qquad

$$
575+205
$$

First add the hundreds: \qquad + \qquad $=$ \qquad
Then add the tens: \qquad $+$ \qquad $=$ \qquad
Then add the ones \qquad $+$ \qquad $=$ \qquad
Lastly, add the hundreds, tens and ones together $+$ \qquad $+$ \qquad $=$ \qquad

$$
450+150
$$

First add the hundreds: \qquad $+$ \qquad $=$ \qquad
Then add the tens: \qquad $+$ \qquad $=$ \qquad
Then add the ones: \qquad $+$ \qquad $=$ \qquad
Lastly, add the hundreds, tens and ones together
\qquad $+$ \qquad $+$ \qquad $=$ \qquad

$$
648+125
$$

First add the hundreds: \qquad + \qquad $=$ \qquad
Then add the tens: \qquad $+$ \qquad $=$ \qquad Then add the ones: \qquad $+$ \qquad $=$ \qquad
Lastly, add the hundreds, tens and ones together $+$ \qquad $+$ \qquad $=$
\qquad
\qquad

Write any 3-digit + 3-digit equation and solve it using left-to-right addition.

LEFT-TO-RIGHT with thousands

Now that you know how to add 3-digit numbers using left-to-right addition, adding 4 -digit numbers is easy! Just use the exact same process.

$$
3471+1329
$$

First add the thousands: \qquad $+1000=$ 4000
Then add the hundreds: $400+300=700$ Then add the tens: 70 $+20$ $=90$
Then add the ones: $\underline{1}+\underline{9}=\underline{10}$

Then add the thousands, hundreds, tens and ones together: \qquad $+700$ $+90+$ \qquad 4800

Now it's your turn!
$2825+1174$
First add the thousands: \qquad $+$ \qquad $=$
Then add the hundreds: \qquad $+$ $=$
Then add the tens: \qquad $+$ \qquad $=$ \qquad
Then add the ones: \qquad $+$ \qquad $=$

Then add everything together: \qquad $+$ \qquad $+$ \qquad $+$ \qquad $=$
$1027+2244$
First add the thousands: \qquad
\qquad
\qquad
Then add the hundreds: \qquad $+$ \qquad $=$ \qquad
Then add the tens: \qquad $+$ \qquad $=$ \qquad
Then add the ones: \qquad $+$ \qquad $=$

Then add everything together: \qquad $+$ \qquad $+$ \qquad $+$ \qquad $=$
$1234+2345$
First add the thousands: \qquad $+$ \qquad $=$
Then add the hundreds: \qquad $+$ \qquad $=$ \qquad
Then add the tens: \qquad $+$ \qquad $=$ \qquad
Then add the ones: \qquad $+$ \qquad $=$ \qquad

Then add everything together: \qquad $+$ \qquad $+$ \qquad $+$ \qquad $=$

In January and February, there are 1416 hours altogether. In March and April there are 1488 hours altogether. In all, how many hours are there in January, February, March and April?

When I add from left to right, I have to remember to

The hardest part of left-to-right addition is \qquad

Solve the equations. Use the strategy that works best for each one.

Jor the Jeacher

Strategy \#|4: Break Up the Second Number

In this level, students will learn another strategy for adding multi-digit numbers. Some students find this strategy more efficient than left-to-right addition. Once they master this strategy, they will possess two "tools" for adding multi-digit numbers. This is beneficial because they can then choose the one that is the most effective and efficient for the particular equation, and for their unique abilities.

Breaking up the second number involves the following steps:

Just as the other strategies have, this strategy will reinforce flexible thinking, and further encourage students to manipulate equations in order to make them easier to solve.

BREAK IT UP!

Another way to add two 2-digit numbers is to break the second number into 2 parts.
$25+22$

Step \#1: Break the second number into tens and ones. In this example, 22 is broken into 20 and 2.
Step \#2: Add the $1^{\text {st }}$ addend (25) to the 20. 25+20=45
Step \#3: Now add the 2 ones. $45+2=47$

Now it's your turn!
$32+16$

Step \#1: Break the 16 into tens and ones.
Step \#2: Add the $1^{\text {st }}$ addend (32) to the 10, 32+10= \qquad
Step \#3: Now add the ones. $42+6=$ \qquad
$13+14$

Step \#1: Break the 14 into tens and ones.
Step \#2: Add the $1^{\text {st }}$ addend (13) to the 10. 13+10= \qquad
Step \#3: Now add the ones. $23+4=$ \qquad

27+31
Show your work here:

BREAK UP THE SECOND NUMBER

LETS KEEP PRACTICING!

$24+24$
Show your work here:

$63+25$

$50+22$
Show your work here:

Show your work here:
$15+21$
Show your work here:

Show your work here:

BREAK UP THE SECOND NUMBER

BREAKING UP BIGGER NUMBERS!-

You can break up bigger numbers in the exact same way. Break them up in a way that works for YOU! Here are a couple of examples:

Solve it:
$146+200=$ \qquad
$346+23=$ \qquad

OR 146+223

223 can be broken up into a "200," a "20," and a "3."

Now it's your turn! Break the second number into 2 or 3 parts - whichever works best for you. Use the white space to show your work.

$$
257+312
$$

$$
461+232
$$

LET'S KEEP PRACTICING!

\qquad

BREAK UP THE SECOND NUMBER

BREAK IT UP!

Use the "break up the second number" strategy to solve the equations. If the sum is odd, shade the pencil yellow. If the sum is even, shade the pencil blue.

Choose the Best STRATEGY

Let's compare left-to-right addition to the "breaking up the second number" strategy. Which one is the most effective and efficient?

Solve this equation using left-to-right addition: $145+214$

Add the hundreds:
Add the tens:
Add the ones:
Add it all up:

Which strategy worked best for you?

Solve this equation using left-to-right addition:
$1147+2462$

Show your work:

Which strategy worked best for you?

Solve this equation using left-to-right addition:
$38+46$

Solve this equation by breaking up the second number: $1147+2462$

Show your work:
\qquad
\qquad

Which strategy worked best for you?

Solve this equation by breaking up the second number: $38+46$

Use any of the strategies that you have learned so far to complete these activities.
Write a greater than (>), less than (<), or equal sign (=).

$300+500$	$458+12$	$4457+1152$	$4509+1000$
$3121+4107$	$3000+3000$	235+413	$324+324$
$234+245$	$300+200$	5381+2500	$3000+3000$
$600+400$	$700+300$	$4000+6000$	$8000+2000$
47+43	$28+58$	548+9	$460+100$

Fill in the missing number in each equation. Use any of the strategies that you have learned so far.

Jor the Jeacher

strategy \#5: Compensation

In this level, students will use their knowledge of friendly numbers in order to perform a new, but related strategy called compensation. When students use compensation, they adjust one of the addends to make it easier to solve. But then the answer must be adjusted to compensate for that original adjustment. This sounds confusing, but take a look below and it will make more sense. ()

The compensation strategy involves the following steps:

We can add 1 to the second addend to make this equation easier to solve.

Since we added 1 to the equation, we now need to subtract 1 from the answer to COMPENSATE for the adjustment.

Here's another example:

We can subtract 4 from the second addend to make this equation easier to solve.

Since we subtracted 4
from the equation, we now need to add 4 to the answer to COMPENSATE
for the adjustment.

Just as the other strategies have, this strategy will reinforce flexible thinking, and further encourage students to manipulate equations in order to make them easier to solve.

COMPENSATION

LEARNING TO COMPENSATE

Another way to add multi-digit numbers is to adjust one number to make it easier. Take a look:
to make this equation
easier to solve.

Let's add 1 to the 49
BUT WAIT! Since we
The sum is 83
addend, we now need to
take 1 away from the
$34+50$ is an easier The sum is 84 . equation to solve. sum to compensate for

Here's another example:

Let's add 4 to the 36
to make the friendly
number "40."
added one to the that adjustment

-
$23+40$ is an easier The sum is 63. equation to solve.

BUT WAIT! Since we added 4 to the addend,

The sum is 59 we now need to take 4 away from the sum to compensate for that adjustment

Now you try it:

This is an easier equation to solve!

BUT WAIT! Since I added to the addend, I now need to take \qquad away
from the sum

I can make the 18 into a friendly number by adding

This is an easier equation to solve!
\square
Here is the sum

BUT WAIT! Since I added to the addend, I now

The sum is
need to take away
$\xrightarrow{\text { COMPENSATION }}$ LET'S KEEP PRACTICING! 15-B
You can also adjust an addend by SUBTRACTING to make a friendly number. Try it here!

Let's Practice COMPENSATING

Solve the equations below. Try using the compensation strategy in your head. If you still need to write your work down, then use the white space inside each box.

Snowball COMPENSATION

Use the compensation strategy to solve the equations below. If you need to write down your "thinking," use a scrap piece of paper.

Putting It All Together ADDITION GRID

Add any two numbers that are touching each other. Then shade the numbers and write the equations below. Use any of the strategies that you have learned so far.

45	9	174	204	2000	3000	1283	213
342	500	2142	2320	119	2451	2313	805
300	410	2004	5022	3489	1210	100	398
700	482	1006	6351	2451	2247	1000	6000
3000	6411	2324	5560	2736	1090	300	2400
1903	253	200	137	400	236	118	152
357	100	372	157	1111	264	210	519
4088	2000	351	100	462	263	233	145

Example: $357+100=457$

Jor the Jeacher

Strategy \#|6: Find Compatible Numbers

Finding compatible numbers is a strategy that students can use to add efficiently when they are adding 3 addends. In this level, students will learn how to choose the two easiest addends to add first, and then add the third addend.

Here is an example of how the compatible number strategy works:

Here's another example:

FINDING COMPATIBLE NUMBERS
When you add more than 2 numbers together, try to look for compatible numbers that make it more efficient to add. Here's an example:

Let's add the 19 and
19 and 1 makes the
Now let's add
The sum is 45 . the 1 first. This will friendly number 20. the last addend: make a friendly the 25 .
number!
Now it's your turn!

Let's add the 25 and 5
first. This will make a friendly number!

25 and 5 makes the friendly number
\qquad

Now let's add
The sum is \qquad the last addend: the 17 .

Let's add the 10 and 10 and 90 makes

Now let's add
The sum is 90 first. This will make the friendly number the last addend: a friendly number! \qquad the 43.

Let's add the 108 and 12 first. This will make a friendly number!

108 and 12 makes the friendly number
\qquad

Now let's add
The sum is \qquad

FINDING COMPATIBLE NUMBERS

Let's
 FIND COMPATIBLE NUMBERS

For each equation, underline the two numbers that can be added to make a friendly number (these are called "compatible numbers."). Add those numbers first, and then add the third addend to find the sum. If you need to write down your thinking, use the white space.

$19+140+1=$

MAKE IT EASIER WITH COMPATIBDE NUMBERS

Solve the equations by adding the compatible numbers first.
$45+100+15=$
$33+7+43=$
\qquad
$124+90+6=$ \qquad

Write and solve 8 equations. Make sure that you challenge yourself!
\qquad + \qquad + \qquad $=$ \qquad $+$ \qquad $+$ $=$ \qquad

+ \qquad $+$ \qquad $=$ \qquad $+$ \qquad $+$ \qquad $=$ \qquad $+$ \qquad $+$ \qquad $=$ \qquad
+ \qquad $+$ \qquad
\qquad
$+$ \qquad $+$ \qquad $=$ \qquad
\qquad
+ \qquad $+$ \qquad $=$ \qquad

List 6 sets of compatible numbers (numbers that can be added to make a friendly number).
\qquad
$450+150+29=$ \qquad
$10+12+40=$ \qquad
$67+122+23=$ \qquad
$46+56+14=$ \qquad
$19+24+31=$ \qquad
$25+13+25=$ \qquad

Two kids had a lemonade stand. On Friday they sold 28 cups of lemonade. On Saturday they sold 32 cups of lemonade. On Sunday they only sold 9 cups. How many cups of lemonade did they sell in all?

Use any of the strategies that you have learned so far to complete these activities.

TRUE AND FALSE

Circle the equations that are true. Draw a rectangle around the equations that are false.

$4567+3000=7567$	$567+29=596$	$357+11=368$
$60+800=140$	$3000+5000=7000$	$25+10+15=50$
$325+413=738$	$1248+1451=2559$	$58+6=63$
$416+200+300=816$	$2000+2324=3324$	$400+600=1000$

Fill in the missing number for each equation. Use any of the strategies that you have learned so far.

Jor the Jeacher

Putting It All Together

Your students have now learned all of the strategies in The \{Grade Four\} Addition Station. By now your students should have a good understanding of many different mental math strategies. They should be working on using the most effective and efficient one for each equation.

Some of the strategies in this Addition Station are complex. Your students may require manipulatives such as base 10 blocks, or simply a paper and pencil when solving some of the equations. If it helps understanding, encourage students to use manipulatives as much as they need to. You will likely find that they gradually move away from manipulatives and toward doing all of the equations mentally.

This final level is included as a "Putting It All Together" Level. In this level, students will practice all of the strategies that they have learned. They will practice choosing the strategy that is best.

You may also notice that students are using their own strategies rather than the ones that they have learned. They may be manipulating numbers in different ways that work better for them. This should be encouraged! The goal of mental math is to teach students how to think flexibly in order to make the equation faster and easier to solve.

PUTTING IT ALL TOGETHER

Equation Hunt

Add up any two numbers that are touching. Shade them in and write the equation (with the sum) in the box.

60	4000	245	20	2387	1190	2201	4500	400	340
2000	1000	974	243	1080	2511	500	400	90	330
755	203	400	210	561	300	5062	612	400	5000
2774	1212	6000	249	2500	406	333	2101	6221	3000
5122	5000	453	220	401	462	1000	100	226	155

$2000+755=2755$
$226+155=381$
\qquad $+$ \qquad = \qquad
\qquad $+$ \qquad $=$ \qquad
\qquad
$=$ \qquad
$+$ \qquad
\qquad
$+$ \qquad
\qquad
\qquad $=$ \qquad
\qquad
$+$

PUTTING IT ALL TOGETHER

Add It Up!

Use a paper clip and pencil to spin a number on the spinner. Then write it in any equation below and find the sum.

\qquad
$=$ \qquad
$2000+$ \qquad $=$ \qquad $2452+$ \qquad $=$ \qquad
$1004+$ \qquad $=$ \qquad
$462+$ \qquad
$57+$ \qquad $=$ \qquad

1482+ \qquad $=$ \qquad $1551+$ \qquad $=$ \qquad $670+$ \qquad $=$ \qquad
$3000+$ \qquad $=$ \qquad $800+$ \qquad $=$ \qquad $5013+$ \qquad $=$ \qquad
$600+$ \qquad $=$ \qquad $2500+$ \qquad $=$ \qquad 533+ \qquad $=$ \qquad

Write any equation and represent it on the number line below:
\qquad

Trent's farm has been around for 3 generations. Trent's grandpa farmed the land for 45 years. Trent's dad farmed the land for 35 years. Trent has been farming it for 13 years. In all, how many years has Trent's farm been around for?

In 2012, 4678 people visited the museum. In 2013, 2000 more visited than in 2012. In 2014, 1000 more people visited the museum than in 2013. How many people visited the museum in 2014?
[Show your work. \longrightarrow Write an answer sentence.

[^0]: Write five "Plus O" equations that are TRUE:

